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INTRODUCTION

Delamination is a major failure mode of carbon fiber organic-

matrix composites. It can occur under a variety of loading

conditions; tensile and compression loading of angle ply laminates

(1,2), Mode I and Mode II loading of notched specimens (3), thermal
stresses and environmental stresses (4). Specifically relevant to

this report, is the fact that delamination is one of the primary

failure modes in low level impact loading. This problem is

especially serious in that low level impacts produce relatively little

damage on the laminate surface but the internal damage can be

sufficiently sever as to reduce the residual compression strength by
as much as 50%. Considerable work has been done on impact damage

much of which has been reviewed in a recent anthology (5).

Efforts to develop predictive models Of t_e deiamination of

carbon fiber composites are hampered by a lack of information about

the micromechanics of impact damage and delamination growth.

Crack formation and propagation in these materials cannot be
observed in sufficient detail to determine micro-damage using

currently available NDE methods such as acoustic backscattering or

X-ray imaging. Consequently, destructive methods are required.

in the work reported here, delamination of composites in Mode
I, Mode II and after low energy impact loads were investigated using

metallographic techniques of potting the failed specimens,

sectioning and examining the cut sections for damage modes. This

technique has been used to investigate impact damage (6) and more

recently microdamage due to compressive failure (7).

MODE I DELAMINATION

EXPERIMENTAL .....

Width tapered double cantilever beam (WTDCB) specimens were

cut from a plate of Hercules IM6/2502 carbon fiber/epoxy matrix

composite. The plate was fabricated by hand lay-up of 24 plys of
unidirectional tape and autoclave cured at 177oC (350OF)for 2 hrs.
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The tapered specimens were cut from the cured panels with the
fibers oriented along the length of the specimen. The dimensions are

given in Fig. I. Aluminum loading tabs were bonded as shown in the

figure and the precrack was initiated by notching with a razor
blade. Details of this test have been published (8,9).

The specimens were fractured to about the mid-point of the

tapered section and the fracture load used to calculate interlaminar
fracture energy. While still in the test machine, a steel rod was

placed between the tabs as shown in Fig. 2 so that the specimen

could be removed without closing the fracture surfaces. The wedged

specimen was then placed in a mold and potted in an epoxy resin.

The potting resin was a diepoxide (DER 332, Shell Chemical Co.)

cured with a polyamine (Jeffamine D-230, Texaco) and an

accelerator (399, Texaco). Prior to curing, the assembly was

evacuated to remove trapped air and to force the potting resin into

the crack tip and any adjoining microcracks or voids. The cure

conditions were 54oc (130OF) for 3hrs.

The potted specimen was sliced into eight longitudinal

sections as shown in Fig. 3. Sections were cut using a 0.30mm

(0.012in) thick, low speed diamond wafering saw. The sliced
sections were 0.64mm (0.025in) in thickness. An additional slice

was taken from the middle of the specimen and cut to a thickness of

0.38mm (0.015in). The sections were polished with 320 and 600 grit

paper followed by a 1.0 micron alumina water slurry on a wet

polishing wheel. The polished sections were examined using a light

microscope in both transmitted and reflected illumination.
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Figure 1 - Dimensions of the WTDCB test specimen
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Figure 2 - Schematic of the partially fractured WTDCB specimen wedged open with a
steel rod.
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Figure 3 - Schematic of specimen sectioning procedure

RESULTS

The most prominent feature observed in the microscopy study

of the polished sections was fiber bridging between the fractured

surfaces. The bridging fibers and fiber bundles are clearly evident in

Fig. 4. The cross-over fibers were most highly concentrated near

the crack tip. In fact, the density of fibers at the crack tip was

sufficient to prevent light transmission through the specimen so
that the actual position of the crack front could only be seen using

reflected light ( Fig 5).

Two other observations were made that are pertinent to the

delamination process. Satellite cracks were observed both above

and below the main crack. One such crack can be seen in Fig 5. In

some WTDCB specimens the advancing crack shifted from the main

crack to one of these adjacent satellite cracks. This resulted in a

thick ligament spanning the separated arms. The fracture load
increased significantly when this occurred and then decreased as the

front moved away from the ligament.
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Figure 5: Reflection photomicrograph showing"satellite" micro-crack near main crack

The other observation was that for the thinner (O.38mm)
specimens micro-cracks became visible near the main crack front as

shown in Fig 6. Some of these features included the satellite

cracks already mentioned. Other, usually shorter cracks were

randomly distributed around the main crack. In Fig 6 they appear to

be advance crack front damage. However, sectioning of laminates

that had not been fractured revealed a similar population of these
microcracks.
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Measurements were made of the distance from the loading pins

to the crack tip (as determined by both reflected and transmitted
illumination) for each of the eight sections. The results are given in

Table I. It would appear that the crack front is essentially linear

across the width of the specimen which would imply that the stress

condition is essentially plane strain with no detectable plane

stress condition at the specimen edges. Locally, the stress state in

the matrix and on the individual fibers is much more complex.

Table I: Distance From Crack Front to Loading Pin Centers

Section No. Distance (mm)
Transmission Reflection

1 112.0 113.5

2 112.5 113.5

3 113.0 113.5

4 112.5 113.5

5 111.0 113.5

6 111.0 112.5

7 110.0 111.0

8 109.0 111.0

Transverse sections of potted IM6/2502 laminates were cut

about 0.3mm behind the crack front. A series of photographs taken at

five equally spaced positions along a transverse section are shown

in Fig. 7. Bridging fibers appear as dark objects in the crack opening

since the section was viewed using transmitted illumination
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Figure 7 - Transmission photomicrographs along a transverse section through the
delaminated specimen about 3mm behind the crack front.

The first (LHS) and the last (RHS) photographs in Fig. 7 were

taken near the specimen edges. It is clear that going from left to
right the crack opening decreases significantly to the extent that at

the right hand edge, the crack is essentially closed. Actually, there

was a ligament of fibers extending across the crack opening at the

right hand side of the specimen. The resistance of this ligament to

the advancement of the crack front could have redirected the plane

of the delamination. Inspection of the specimen indicated that this
did not occur. None the less, the effect of these ligaments of

bridging fiber bundles must effect the delamination fracture energy

and any calculation of the crack opening displacement.

DISCUSSION

The principal observations of this study were the massive

fiber bundle crossover at the crack tip of the delaminated specimens

and the ligaments of fiber bundles that persist behind the main

crack front. The density of crossovers decreased away from the
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crack front where the fibers had pulled out and/or fractured.
Clearly, there are two energy consuming processes involved; the

pull-out (or more exactly the peel-out) of fibers from both sides of

the delamination and the breaking of these fibers. For the material

studied here, must of the bridging involved fiber bundles and very

few individual filaments.

Fiber bridging may be more prevalent and possibly unique in
the delamination of unidirectional laminates compared to angle ply

laminates. Although, the unidirectional laminates are fabricated

from prepreg plys, there is considerable nesting and intermingling of

the filaments during the compaction steps of the vacuum
bag/autoclave processing. In viewing the cut sections it is not

possible to identify the individual plies. In angle ply laminates,
there is little opportunity for fiber nesting and the plies with

different orientation can be easily identified in sectioned and

polished specimens (8). This distinction between unidirectional and

angle-ply laminates is significant in that crack propagation through

a resin rich layer probably requires less energy than through a

"maze" of bridging fibers and fiber bundles. Actually, the situation

is more complex as discussed in the next section on Mode II
delamination.

One of the objectives of this investigation was to examine for
evidence of micro-cracking or other damage in advance of the main

crack front. No precrack damage was found. The micro-cracks

observed ahead of the crack front shown in Fig. 6 were found at a

comparable density well away from the delamination in undamaged

regions of the composite. Presumably these microcracks are voids
or resin rich areas. It is also possible that some of these

microcracks are artifacts resulting from the sectioning and

polishing. If the microcracks are in fact laminate defects, then this

sectioning technique can be used to determine laminate quality.

Other fiber-matrix combinations were fractured and sectioned

to determine if the density of cross-over fibers varies with matrix

fracture energy and fiber strength. The 2502 epoxy matrix has a

relatively high fracture energy (270 J/m 2) and the IM6 is a

relatively strong fiber (4.9 GPa). None the less, tests with an
AS4/3501-6 laminate for which the matrix fracture energy is

130J/m2 and the fiber strength is 3.6 GPa also exhibited

considerable fiber bridging.
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The zone of bridging fibers and fiber bundles evident in Figs. 4
and A1 suggest the line zone of crack tip damage assumed in the
Dugdale model of crack tip plasticity (10). Accordingly, the length
of the plastic zone R is given by,

R = _- _,(_y.)

Where KIc is the stress intensity factor and cy the tensile yield
strength of the material. The stress intensity factor is given in

terms of the strain energy release rate, GIc, by,

EGIc
KIc2 = 1-V 2 Eq. 2

where E is the tensile modulus and v Poisson,s rati01 Taking some

typical values for carbon fiberl epoxy matrix composites, i.e.,

E = 1.25 x 101] Pa

Gc = 721 Pa. m

Gy = 40 X 106 Paa

gives a value for R of about 25mm. which is more than three times

the length of the crack shown in Fig.4. This distance seems

excessively long but may reflect the influence of bridging fibers and

ligaments well behind the crack front.

MODE I! DELAMINATION

EXPERIMENTAL

The test fixture shown in Figure 8 was constructed to load

end-notched carbon fiber laminates in order to induce pure Mode il

cracking and then pot the cracked specimen in a clear epoxy for

a The tensile strength of the 2502 epoxy is used here for Gy which probably
under estimates the yield strength.
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sectioning and microscopy. As shown in Figure 9 the specimen is

clamped at one end and deflected downward at the other end by
turning a bolt with a short wooden dowel contacting the specimen.

Crack growth at the edge of the specimen was observed using a
telescope and when the crack reached about half the length of the
specimen a mold was built around the free end of the laminate

(including the dowel), filled with the potting resin and heat cured.

Figure 8 - Flexture load frame for Mode II delamination
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Figure 9 - Schematic of Mode II loading and lhe end notch configurations.

The test laminate was a unidirectional 16ply, AS4/3501-6

composite l in. wide and 4in. in length. Excessive bending of the
specimen near the clamped end resulted in failure before a

delamination could be produced. This problem was solved by

supporting the specimen with two laminates 0.5in. wide and 2.25in.

and 3.25in. long respectively. Using this configuration, a mid-plane

crack could be initiated without any breakage at the clamped end.

Two loading configurations areshown in Figure 9. In one case

(Figure 9A) the laminate was precracked using a knife blade, the
upper section cut away and the dowel positioned against the

protruding lower section. In order to minimize Mode I loading, a
wire was wrapped around the specimen. Judging from visual

observations the Mode I opening displacements are minimal at the

crack front that had propagated one-half the length of the specimen.

The same test procedure was used to investigate Mode II

delamination of a cross-ply (0/90)8s laminate. In these experiments
the laminate did not have to be end cut but was precracked using a

razor blade (Fig 9B). The specimen was loaded to about 0.5 in.

deflection at which point a crack propagated about 3/4 of the

specimen length. The specimen was then potted, cut into sections
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about 2mm thick and the sections polished.

RESULTS

Unidirectional Laminates; The loading configurations shown in

Figure 9B should produce a pure Mode II delamination. However, we

were unable to induced a crack in this fashion. The fractography

results reported here are for cracks produced using the "split end"
configuration, Fig. 9B.

The general appearance of the cut sections is shown in Figure

10. Two major cracks developed in the specimen; the major crack

along the central plane and a pure Mode II crack in the upper half of

the specimen. The crack in the upper half of the specimen is
designated as a "pure" Mode II crack based on the fact that there was

relatively little displacement of the crack faces. In principle, a
Mode II crack should not be visible since it involves only shear

displacements. None the less, the cracks generated in this study are

the result of primarily Mode II loads.

For the most part, these cracks progressed through the matrix

with relatively little fiber bridging. Occasionally, there was

evidence of fibers spanning the crack (Figure 11). The Mode II crack

was not continuous. As shown in Figure 12, the crack is distinct on

the left and right hand sides of the photomicrograph but disappears
in the center.

mode II crack

mixed mode crack

micro cracks

Figure lO Schematic of cracking in a Mode II specimen

As shown schematically in Figure 10, there were microcracks
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near the major crack and especially ahead of the crack front. It was
sometimes difficult to distinguish microcracks from laminate

imperfections but there is the distinct possibility that "satellite"

microcracks develop ahead of the main crack front but then close-up

once the crack front has passed. The formation of these satellite

cracks probably constitute part of the energy of Mode II crack

propagation, at least for the test configuration used here.

The stressed laminate revealed extensive fiber breakage

throughout the specimen. In Figure 13, photomicrographs are shown
of a section cut through an unstressed laminate and a section

through the stressed laminate. In the latter, many of the fibers

appear to have broken into short segments.

0.2mm

Figure 11 - Mode II crack showing bridging filament.

O.2mm

Figure 12 - Mode I1opening was barely perceptible in some regions.
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A 0.o4mm

B o.04mm

Figure13 - Fiberfracture in tested specimen (A) not observed in untested laminate.

Cross-Ply Laminates" Crack propagation occurred at a bending

stress of 9.6x106 psi. and was always through a 0o ply. In one

specimen it was observed that the major crack shifted to the next 0 o
ply. There was no evidence of any transverse cracking through the

adjacent 90 ° ply. In general, the crack propagated near the edge of
the 0o ply, close to the resin rich area between plys but always at

least a few fiber diameters into the ply. In addition there was no

evidence of fiber bridging.
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DISCUSSION

It is difficult to draw general conclusions about Mode II

propagation from these studies because of the rather specific
loading conditions necessitated by the need to be able to pot the

cracked specimens. The high loads required to initiate propagation of
the unidirectional specimen resulted in fiber breakage which is not

generally typical of Mode II testing. In addition, loading was not
pure Mode II but mixed mode albeit predominantly Mode I1. Indeed, as
stated earlier, a pure Mode II crack should not be visible since there

is no crack opening. The only crack that was purely Mode II was in
the unidirectional specimen and, in fact, was difficult to discern
(Fig 12)

Contrary to expectations, the Mode II crack did not propagate
through the resin rich regions between plys in the cross-ply
laminates. Instead, propagation was solely within the 0 o plys near
the boundary with the resin layer. This phenomena was encountered

in a study of impact damage (6) as shown in Fig. 14. The explanation
offered in reference 6 is that there are residual thermal stresses

near the ply-resin boundary that make propagation within this

boundary more energetically favorable than propagation in the resin
layer.

Figure 14 - Delamination produced by impact showing preferential propagation along
the fiber/matrix boundary (reference 6).
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No fiber cross-over was observed in any of the Mode II
laminates. This fact suggests a lower crack resistance under Mode
II loading than under Mode I loading. The Mode I study indicated
fiber pull-out and fiber fracture as important energy dissipative
effects which are evidently absent in Mode II cracking. Russel and
Street (11) have presented evidence that crack propagation in Mode
il occurs at a lower energy than in Mode I

IMPACT TESTS

INTRODUCTION

This part of the study was predicated on reports in the

literature (12) that repetitive impact of a laminate specimen with
increasing impact energy revealed changes in the type of impact

damage, e.g., delamination vs fiber breakage. If correct, this

technique would be a useful tool for determining the impact energy

at which different damage modes occur for different laminate
materials.

As shown in the following sections, the claims made in

reference 12 are unfounded b. Instead, the changes in the response of

the laminate to repetitive impact with increasing impact energy are

the result of changes in the extent of damage rather than the type of

damage. None the less, the results reported here revealed some

subtle effects in the impact resistance of thermoset matrix

laminates vs thermoplastic laminates, the effects of ply

orientation, static vs dynamic loading, differences in laminate

thickness and simple fatigue ( repetitive impact at constant impact

loading) vs repetitive impact with increasing impact energy (RILE)

EXPERIMENTAL

Materials: Four different composite materials were studied,

AS4/3501-6, IM6/3501-6, AS4/PEEK and AS4/polycarbonate. The
manufacture, thickness and stacking sequence of the various

b We have learned of a manuscript being reviewed for publication that makes
the same claims as tn reference 12, The reviewer could not, of course, provide
any further information.
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specimens are summarized in Table 11. The AS4/3501-6 and
IM6/3501-6 laminates were cured in an autoclave at the University

of Utah, Mechanical & Industrial Engineering Dept. according to the
manufacturer's recommended cure schedule. Each impact plate

specimen was cut from a large panel (15cm x 15cm) to 5cm x 8cm

dimension using a diamond cutting saw. For a 5cm x 8cm coupon, 1.5
cm at each end were clamped to the support so that the unsupported

dimension was 5cm x 5cm. In order to measure the effect of sample

dimensions on impact response, specimens with unsupported
dimension of 10cm x 10cm were also tested. To investigate the

effect of laminate thickness, 32 ply and 16 ply specimens were

tested. Ultrasonic C-scan acoustic imaging available at Hercules

Aerospace, Magna, Utah was used to check the quality of each panel

before they were impacted and to determine the location of the

damage after they were impacted.
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Impact Apparatus: The instrumented impact tester used in

this study is similar to that described by Zoller (13). The free-fall

drop weight is within a cylindrical drop tower as shown in Fig. 15
When the drop weight bounces up, it is caught by a ratchet

mechanism. This impactor consists of four main parts; load

transducer, oscilloscope, IBM PC and printer. A piezoelectric crystal

accelerometer (PCB Piezotronics 305A02) is mounted inside the

drop weight. During the impact the output of the transducer is fed

to a transient signal recorder. A Data Precision D6000 digital

oscilloscope records the acceleration versus time during the impact

event. The output is filtered using Fourier transformation to remove
data above 7000 Hz. Then the data is back transformed to

acceleration versus time. Fourier transforming the data reported

here showed that a reproducible resonance between 7000 and 8000

was independent of sample size indicating it is a resonance

frequency characteristic of the equipment and not of the test
sample. However, due to a natural vibrational frequency of some of

the composite specimens between 6000~7000 Hz, the cut-off

filtering frequency could not be less than 7000 Hz.

Acceleration, a(t), is calculated from the digitized voltage-

time information j(t) and the sensitivity of the accelerometer, s, in

mv/g,

a(t)=l-(j(t)/s)

then velocity v(t) and displacement u(t) are obtained from,

v(t) = vo + J" a(t) dt

u(t) = Uo + J' v(t) dt

Also the absorbed energy U(t) and the force exerted on the sample

are obtained from,

U(t) = mgho- (1/2) m {Vo2-V(t) 2}

F(t) = m {g-a(t)}

The accuracy of the initial velocity measurement is important in

calculating the absorbed energy and displacement(14). Impact

velocity v o was measured by two photoswitches. Finally the

following data and plots are printed; percent of transferred energy,

22
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Figure 15 - Drop-weight impact test equipment.
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impact energy, maximum force, maximum deflection, time of zero

velocity, and impact time. Force vs displacement, energy vs time

and amplitude of vibration verse frequency can also be plotted.

C-s_an" Ultrasonic transmission C-scan was used to

determine the overall panel quality and the location of damage.

Ultrasonic equipment was available at Hercules Aerospace, Magna,

Utah. Alcohol or an alcohol-water mixture acted as a coupling fluid

between a piezoelectric transducer and_he specimen.

Specimen sectioning and Damage MaDping: The impacted

specimens were potted in an epoxy mixed with an amine curative and

an amine accelerator to preserve the damage and were cured at room

temperature over night. The epoxy mixture contained diglycidylether

bisphenol A epoxy (Shell 828), polyamine (Jeffamine 230) and

accelerator (Texaco 399) in the ratio of 10 : 5 : 1. Slices were cut

from the sample at 0.075 inch (0.19 cm) intervals from the center of

the damaged region (Fig.16). One face of each slice was polished

sequentially with #320 and #400 grit papers followed by wet

polishing with 1 #m and 0.3 }4m AI20 3 paste on a velvet cloth. The

polished surface was examined using reflected light microscopy for

the type and extent of damage in each ply. Each of the damaged

regions were plotted in three dimensions using a computer program
(Appendix 2).

o ° fiber direction

F

!

f

Cuts Visible dent

Figure 16 - Schematic of sectioning through the impact damage area.
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Test Method: The repetitive drop weight test with increasing
energy (RILE) was performed by a repeated drop weight impact on the

same spot of the same specimen with constant incrementally
increasing impact energy. A similar procedure was used by
Stellbrink (15,16). The specimen was clamped by two toggle clamps
on steel support as shown in Fig. 17. The impact energy was
increased by increasing the impactor height from 10cm to 72cm. The

increment in height was lcm, the weight of the impactor was 1085g
and the impactor tip was hemispherical (radius 0.5 cm).

"" 8 "'--.,, cm v
sample

clamp

5cm

/
steel

Figure 17 Clamping arrangement of impact specimens

Fatigue impact tests were performed by repeatedly dropping an
impact mass(1085g) at a fixed height(35cm).

Static tests were performed using a hydraulic powered test
machine (MTS 800). The test conditions such as the specimen
geometry, dimensions of the sample, clamping conditions and impact
tip were the same as for the impact tests. The force was applied on
each sample up to and beyond the elastic limit. These samples were
then C-scanned, the damage area cut and sectioned. The sections

were examined microscopically from which damage maps were
constructed.
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The post-impact residual tensile modulus was determined

using the MTS test machine. The strain rate was 0.005mm/sec.
Extensional stiffness was calculated from the slope of the load vs

displacement plot.

RESULTS

AS4/350I-6 (0/90) laminate: The stiffness was calculated

by two different methods. One was from the maximum force divided

by the maximum deflection and the other was from the impact time,
i.e., the stiffness k from the mass-spring model is given by k=

(m=2)/t 2 where m is the total mass (impactor + sample) and t the

impact time. Stiffness vs accumulated impact energy (,T_,I.E.) is

shown in Fig.18 and percent of transferred energy vs cumulative
impact energy (,T_,I.E.) is shown in Fig.19. Three distinct stages of
more or less constant stiffness were found, -5200 N/mm, ~2100

N/mm and ~630 N/mm. The stiffness calculated by the two

different methods gave essentially the same value.

In Fig.19, the percent of transferred energy of the first and

second stages were 35%. The third stage showed an energy

absorption of ~60%. There was a significant peak in the percent of

transferred energy between stage one and two. This phenomena was
observed for other laminate materials and geometries.
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plotted in Fig.20. Curves a,b and c are respectively stages 1,2 and 3.
The slope of each curve represents stiffness, and the area of each
curve represents absorbed impact energy.

6OO0

5000 i

1 I I I I I

4000

2000

b

C

I000

I I
5 6 ?

Figure 20 - Force vs displacement for AS4/3501-6,(0/90)16s

These data clearly show the decrease in stiffness and increase in

absorbed energy for the three stages. There was a large variation in

the force during stage 1 (Fig.20a) which is probably the result of
elastic vibrational noise.

C-scans were taken of impacted specimens selected from each

of the stages. The specimens were then sectioned and damage maps

generated. Figure 21 are C-scans of stages 1, 2 and 3. The damage

maps of each stage are presented in Fig.22-24.
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/ Figure 21 C-scans of impact damage in AS4/3501-6, (0/90)16s after T. I. E. atl0J
(a), 80J (b) and 170J (c).
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In the first stage obtained after 7 impacts, the damage was

concentrated on the front surface (Fig. 22) and the amount of the

damage was very small. Only a few transverse cracks were found.

The damage at this stage from the C-scan was hardly detectable

(Fig. 21a).

In the second stage, the damage was through the thickness of

the sample (Fig.23) and the C-scan clearly showed a damaged area

(Fig. 21b). Most damage was transverse cracking and delamination in

the 90 ° plies as shown in Fig. 25a.

in the third stage, the damage had propagated to the edges of

the sample (Fig. 21c) and fiber breakage was observed (Fig. 25b).

ply count
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Pot nt of irnpact
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1.9 mm

Cuts ( from center line)

Figure 22 - Damage map of AS4/3501-6, (0/90)16s after T, I.E. = lOJ,
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Figure 23 - Damage map of AS4/3501-6, (0/90)16s after 2, I.E. = 80J.
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Figure 24 - Damage map of AS4/3501-6, (0/90)16s after w. I.E. = 170J.
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A

B

Figure 25 - Photomicrographs (80X) of impact damage after z; I. E. = 30J (A) and 150J
(B)

AS4/3501-6 (_, 4_o! Laminator; Very similar results were
obtained for laminates with (+ 45o) fiber orientation. The stiffness
vs cumulative impact energy and the percent transfered energy vs
cumulative impact energy are shown in Figs. 26 and 27.
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Figure 26- Stiffness vs cumulative impact energy for AS4/3501-6, (-+45)16s
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Figure 27 - Percent transfered energy vs cumulative impact energy for AS4/3501-6
(+45)16s
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The second stage in the stiffness plot extended to higher cumulative
impact energies and the third stage was not as clearly defined
compared to the (0/90) laminate. The second stage corresponded to
through the thickness damage as shown by the damage map in Fig 28.
This damage extended to the edges of the laminate after a T. I. E. of

300 J (Fig. 29)

Poi nt of impact

Plycount

32

1.9 mm

Cut (from center11 he)

Figure 28 - Damage map of AS4/3501-6, (+--45)16s after T_,I.E. = 80J.
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Figure 29 - Damage map of AS4/3501-6, (+45)16s after _: I.E. = 310J.

IM6/3501-6 (0/90) and IM6/3501-6 (+45) L_min_tes: The

stiffness and percent transfered energy vs cumulative impact energy

for IM6/3501-6, (0/90) and (+45) are presented in Figs 30 and 31.

Three distinct stages were observed in the stiffness plot for the
(0/90) laminate (Fig 30) and as with the AS4 materials the second

and third stage corresponded to through the thickness damage and

extension of the damage to the edges of the specimen. The

corresponding damage maps are shown in Figs 32 and 33.
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Figure 30A - Stiffness vs cumulative impact energy for IM6/3501-6, (0/90)16s
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Figure 32 - Damage map of IM6/3501-6, (0/90)16s after T. I.E. = 110J.
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Figure 33 - Damage map of IM6/3501-6, (0/90)lSs after _. I.E. = 190J.

In the case of the (+45) laminate the cumulative impact energy was

not taken to a high enough level to develop a third stiffness plateau

(Fig. 31A).

AS4/PEEK (90/0) Laminate: Figure 34A and 34B present the

stiffness and percent of transferred energy vs E, I.E. for AS4/PEEK

(0/90) laminates respectively. Unlike the results with the 3501-6

matrix laminates there were no distinct stages of relatively

constant stiffness except for an initial plateau. Up to 80J of 5'. I.E.,

the stiffness was about 4300N/mm and the percent of transferred

energy between 30-40% (Fig.34B). Subsequently, the stiffness

started to decrease gradually with high energy absorption ('-.70%)

and the percent of transferred energy was very scattered compared
with the 3501-6 materials The stiffness calculated from maximum

force divided by maximum deflection was more scattered than that

calculated from impact time (Fig.34A). The last impact showed

almost zero stiffness and about 100% of energy absorption. The load

v s displacement curves are plotted in Fig.35.
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Figure 34A - Stiffness vs cumulative impact energy for AS4/PEEK, (0/90)lSs
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Figure 35 - Force vs displacement plots for AS4/PEEK,(0/90)16s at _. I.E. of 50J (a),

150J (b) and 230J (c).

The results of the C-scans are given in Fig. 36 and the damage

maps in Figs. 37, 38 and 39. In the initial stage (E, I.E.= 35 J), the

damage was small but clearly evident from the C-scan. (This C-scan
was done at a higher impact energy than for th_corresponding

AS4/3501-6 laminate.) The map shows that damage Was confined to

the front and back plies, and was primarily transverse cracking.

Damage at a ,_, I.E. of 115 (J) was more localized compared to the

3501-6 systems. The major damag e was in the mid p!ane of the

laminate (Fig_38) and usually consisted of transverse-cracking and

delamination (Fig.40) as well as some_ber break-age (Fig.41).
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b

Figure 36 - C-scans of impact damage in AS4/PEEK,(0/90)16s arT-, I.E. 35J(a), 115J

(b) and 280J (c)
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Figure 37 ° Damage map of AS4/PEEK, (0/90)16s after _ I.E. = 35J.
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Figure 38 - Damage map of AS4/PEEK, (0/90)16s after 7., I.E. = 115J.
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Figure 39-Damage map of AS4/PEEK,(0/90)la, at 5".I.E.- 280 J

Figure 40 - Damage of AS4/PEEK, (0.90)16s at S I. E. - 115j (80X)
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Figure 41 - Damage of AS4/PEEK, (0,90)16s at T.,I. E. = 115J (80X)

Damage at ,_, I.E. of 280 (J) extended to the edge of the sample
but was confined to the midsection (Fig.36c) whereas in the 3501-6

matrix laminate the damage spread more or less uniformly.
Extensive fiber breakage was observed (Fig.42).

Figure 42 - Damage of AS4/PEEK, (0,90)16s at T.,I. E. = 280J (80X)

4?



AS4/PEEK (.±45) Laminate; Stiffnesses and percent transferred

energy vs T. I.E. are presented in Fig 43. In the initial plateau, the

stiffness was about 3000 N/mm which was less than for the (90/0)

orientation but extended over a wider range of T. I.E. Then the

stiffness started to decrease at a higher energy absorption but the
rate of decrease was lower.
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Figure 43A - Stiffness vs cumulative impact energy for AS4/PEEK, (+45)1ss
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Figure 43B - Percent transfered energy vs cumulative impact energy for AS4/PEEK,
(-+45)16s

A C-scan at 7_.,I.E of 250 J is shown in Fig. 44 and a

corresponding damage map in Fig. 45. The damage was confined to

the center of the laminate and through the thickness. The tests
were not conducted beyond 250J.

Figure 44 - C-scan of impact damage of AS4/PEEK, (+45) at y. I. E. = 250J
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Figure 45 - Damage map of AS4/PEEK, (+45) at _. I.E. = 240J

AS4/oolvcarbonate (90/0) Laminate: Figure 46 presents the

stiffness and percent transferred energy vs ,T_,I.E.. Initially the

stiffness gradually increased from 4000 N/mm to 5300 N/mm and

then started to slowly decrease at about 150 J (Fig.57).
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Figure 46A - Stiffness vs cumulative impact energy for AS4/polycarbonate, (0/90)16s
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Figure 46B - Percent transfered energy vs cumulative impact energy for
AS4/polycarbonate, (0/90)16.,,
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The C-scan and the damage map at ,T_,I.E. of 270 J are shown in

Figs.47 and 48 respectively. The damage was highly localized and

restricted to the front and the back plys. Some fiber breakage was

observed. This material appears to be more damage resistant than
the other composite materials in these tests.

Figure 47 - C-scan of impact damage of AS4/polycarbonate, (0/90)16s at E I. E. =
270J
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Figure 48 - Damage map of AS4/polycarbonate, (0/90)16s at 7_,I. E. = 270J

AS4/polycarbonate(+45) laminate: Stiffness and percent

transferred energy vs 7_,I.E are shown in Fig.49. A C-scan and damage

map for ,T_,I.E of 250J are presented in Figs. 50 and 51 respectively.

The reduction in stiffness and the extent of damage were even less

than for the (0/90) laminate.
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Figure 49A - Stiffness vs cumulative impact energy for AS4/polycarbonate, (+45)16s
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Figure 49B Percent transfered energy vs cumulative impact energy for
AS4/polycarbonate (+45)16s
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Figure 50 - Damage map for AS4/polycarbonate, (_+45)at y. I.E. = 250J

Effect of Sample Dimensions and Thioknes8; The size of the

unsupported specimen area was increased from 5cm x 5cm to lOcm x

l Ocm. In separate experiments the unsupported size was maintained

at 5cm x5cm but the sample thickness was decreased from 32plies
to 16 plies.

The effect of increasing the sample size for AS4/3501-6 is

shown in Fig 51 and for AS4/PEEK in Fig 52. As expected, the

10xl0cm specimens had much lower stiffness and the changes in

stiffness with cumulative impact energy were less pronounced. In
the case of the AS4/3501-6 there was a transition at about the

same Y., I. E. as was observed for the smaller, 5x5cm, specimen. In

the case of the AS4/PEEK the 10xl0cm specimen did not undergo any
detectable change in stiffness. In fact, the experiment was
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extended to almost 4000 J without any observable change in
stiffness.
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Figure 51 Comparison of stiffness vs >", I. E. for plates of AS4/3401-6, (0/90)16s

with unsupported dimensions of 5cm x5cm and 10cm x 10cm.

t/)

¢)

"6

5OOO

4OO0

3O0O

2OOO

100O

0

W

[] []
[]

[]
m 5=

[]

[] 5x5 cm

• 10xl0 cm

ta
• I ' I I

0 100 200 300 400

E. -

Figure 52 - Comparison of stiffness vs _: I. E. for plates of AS4/PEEK, (0/90)16s with

unsupported dimensions of 5cm x5cm and 10cm x 10cm.
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Figure 53 - Comparison of stiffness vs cumulative impact energy for AS4/3501-6
(0/90)s laminates having 16 plies and 32 plies

Decreasing the AS4/3501-6 specimen thickness from 32 plies

to 16 plies caused the initial change in stiffness to occur at a T_,I. E.

of about 5 J, Subsequently, there was a short plateau in stiffness
(second stage) followed by a transition to a lower stiffness (third

stage). Evidently, reducing the specimen thickness results in the

same sequence of damage modes but over a much shorter range of
cumulative impact energy than for the thicker, 32 ply specimen.

A damage map of a 16 ply specimen from the second stage (F_,

I.E. = 10J) is shown in Fig. 54. The damage was through the

thickness of the specimen and had a conical profile..
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Figure 54 - Damage map for AS4/3501-6 (0/90)8s at _ I. E. = 10J

Fatiaue Testing vs RIlE Testing: Specimens of AS4/3501-6

were tested in a "fatigue" mode in which the specimen was impacted

repetitively but at a constant impact load. The results of these

tests are compared with the repetitive impact with increasing load

(RILE) in Fig 55. In the fatigue test, the stiffness dropped after the

first impact to the second stage level of the RIlE test but then

remained constant with further loading.
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Figure 55 - Comparison of the change in stiffness vs cumulative impact energy for
fatigue loading vs repetitive impact with increasing energy (RILE) for AS4/3501-
6(0/90)16s.

These data can be viewed from a different perspective by plotting

the change in stiffness with actual impact energy rather than with

cumulative impact energy. The data plotted in Fig. 56 are from the

RIlE testing and the data plotted in Fig. 57 are from the fatigue
testing A comparison of Figs.56 and 57 show that the loss in

stiffness occurs at about 3 J whether this level of energy is arrived
by incrementally increasing the impact load (RILE test) or is the

initial load in the fatigue test.
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Figure 56 - Stiffness vs impact energy (noncumulative) from RIlE data for AS4/3501-
6, (0/90)16s (Fig. 18)
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Figure 58 shows the fatigue data vs the RIlE data for
AS4/PEEK (90/0)lss. In the fatigue test, even after 1200(J), the

stiffness did not drop significantly compared to the RIlE data.
However, the initial decline in fatigue stiffness was relatively

gradual compared to the AS4/3501-6 fatigue data (Fig. 55)

4000 __,_$

3000 o% •

2ooo
r_

1000

4> •
4>

• •

• RDTIE
• FATIGUE

0 i • I i I

0 500 1000

_I.E.

Figure 58 - Comparison of the change in stiffness vs cumulative impact energy for
fatigue loading vs repetitive impact with increasing energy (RILE) for
AS4/P E EK(0.90) 16s

STATIC LOADING

A comparison was made between dynamic impact damage vs

damage resulting from static three point bend loading. The strain
rate of the static test was 0.005mm/sec.. The loader was

hemispherical with a tip having the same radius as the impact
loader (0.5cm) and the specimens were supported identically as in

the dynamic tests. Load was applied to failure and from the
resulting load displacement plot, specimens were loaded to key

points along the initial load displacement curve and then C-scanned,

potted, sectioned and the sections examined to develop damage
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maps. These tests were performed on (0/90)16s panels of AS4/3501-
6, AS4/PEEK and AS4/polycarbonate.

AS4/3501-6 Three distinct regions were observed in the

static load displacement plot (Fig.59). In the first region, the

stiffness was 5000 N/mm, which was similar to the stiffness (max

load/max deflection) in the dynamic test (Fig 18). This stiffness

abruptly decreased to 2300 N/mm, which was approximately the

same as the stiffness of the second region in Fig 18. The third stage
stiffness was 500 N/mm.
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Figure 59 - Static force-displacement plot for AS4/3501-6, (0/90)16s

The damage patterns from C'scans were sim3_iar_ to those of

the dynamic test (compare Fig. 5"gwith Fig_ 21)1 Damage maps Of

each of the stages from the static test are presented in Figs. 60-62.

In the first damage stage of the static test, there was no contact

damage on the front surface. In the second stage of this test, the

pattern of damage was the same as that for dynamic loading, i.e.,

through the thickness and consisting of transverse cracking and
delamination
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Figure 61 - Damage map of AS4/3501-6,(90/0)lss laminate loaded to a
displacement of _ 3 m m
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Figure 62 Damage map of AS4/3501-6,(90/O)lss laminate loaded to a
displacement of ~ 4 m m

In the microscopy examination of the specimen loaded to 4mm

displacement (Fig 62), fiber breakage was found on the back surface

plys (Fig. 63) whereas fiber breakage was found in the front surface

plys of the impacted specimen (Fig. 25B). Both the statically tested

and impacted specimens showed the similar conical shape damage
under the indenter.
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Figure 63 - Photomicrograph of backside damage of static loaded AS4/3501-
6,(90/0)1ss laminate loaded to a displacement of ~ 4ram

Figure 64 is the static force-displacement curve for
AS4/3501-6,(+45) in the static test. The stiffness of the first
region was around 3300 N/mm which was the same as the stiffness
of the first region in the dynamic tests. Subsequently, the stiffness
was about 1700 N/mm until the displacement reached 5 mm at
which point the force started to drop until 7.5 mm and C-scanning
indicated that the damage had reached the specimen edges.

AS4/PEEK; Figure 65 is the load displacement plot for
AS4/PEEK (0/90)16s. There is an initial constant stiffness followed
by a more or less continuous decrease in stiffness that becomes
very pronounced after 4.5 mm. The shape of the plot in Fig.65 is
clearly different from that for AS4/3501-6,(0/90), see Fig.59.
Damage maps at three positions along this load-displacement curve
were constructed (Figs. 66-68).
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Figure 64 - Static load-displacement plot for AS4/3501-6 (0/90)16s
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Figure 65 - Static load displacement curve for AS4/PEEK (0/90)16s
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Figure 66 - Damage map for an AS4/PEEK,(90/0)lss laminate loaded to about 2.5mm
displacement
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Figure 67 - Damage map for an AS4/PEEK,(90/0)16s laminate loaded to about 4mm
displacement
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Figure 68 - Damage map for an AS4/PEEK,(90/0)lss laminate loaded to about 5.5mm
displacement

No damage was found in the first linear region of the static

test (Fig. 66). The second damage map (Fig.67) was drawn after the

initial drop in force and showed transverse cracking near the front

and back surfaces. In addition there was a noticeable bulge in the

back surface of the specimen. This type of deformation had not been
observed for any of the 3501-6 laminates.

The stiffness (~3500 N/mm) in the initial region in the static

load displacement plot was less than that of the impact test (~4300,
Fig 34A). In the static test at 5.5mm displacement both fiber-

breakage and also fiber displacement were observed (Fig.69).
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Figure 69 - Photomicrograph of AS4/PEEK,(90/0)lss laminate loaded to about 5.5mm
displacement showing displacement of fiber plys

Figure 70 is the static load - displacement plot for AS4/PEEK,
(+45)1ss. The stiffness of the first linear region was -2200 N/mm
which was less than the stiffness observed in the dynamic test

(~3000 N/mm, Fig 43A). After the initial drop in load, the force

decreased continuously. The damage was still inside the sample even

at 7ram displacement (Fig.71).

71



(5000 I I I I I I

4O0O

OOO --

,_,l

2000

1000 --

I I I ] J I
O0 ....1 2 3 4 5 8

DZSPL^CEHENT (1_)

Figure 70 - Static load-displacement plot for AS4/PEEK (-+45)16s
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Figure 71- C-scan of AS4/PEEK (+45)16s laminate at 6.5mm displacement.

Figure 72 is the static load-displacement plot for the

AS4/polycarbonate(0/90)16s laminate. At first the slope is linear

up to 2.3 mm and then decreased at 3.8 mm displacement and again

at 4mm. The constant slope in the linear region indicated a stiffness
of ~3700 N/mm, which was less than the --5300 N/mm observed in

the impact tests (Fig. 46A). From C-scans, the sudden drop in force

at 4 mm corresponds to the damage reaching one edge of the sample

(Figs 73 and 74).
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Figure 73 - Damage map of AS4/polycarbonate(0/90)16s after 4.5mm displacement

Figure 74 C-scan of the damage of AS4/polycarbonate(0/90)16s after 4.8ram
displacement.

Post'lmpact Tensile Modulus

Three impacted samples were selected from the AS4/3501-6,
IM6/3501-6 and the AS4/PEEK dynamic RIlE studies and tested for

residual tensile modulus (Fig. 75). All specimens were (0/90)16s

orientation. The test specimens were selected from the high,
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intermediate and low damage "stages".

For the brittle 3501-6 matrix laminates, the tensile moduli
decreased continuously with increasing Z, I. E.. For the tough PEEK

matrix, the modulus did not decrease significantly below a

cumulative energy of about 100J. At the lower Y_, I. E. the IM6/3501-

6 had a higher modulus than the AS4/3501-6 due to the higher

modulus of the IM6 fiber. At Y_, I. E. greater than 200J, the the

moduli of the two 3501-6 laminates were essentially the same

suggesting that the damage was so sever that it was essentially

determined by the matrix, i.e., the fibers were severely broken and
unable to carry load. On the other hand, the AS4/PEEK still had a

high modulus even at _ I. E. of 275J due presumably to the relatively

small area of damage even though there had been considerable fiber
fracture.
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Figure 75 -Residual tensile modulus vs cumulative impact energy
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DISCUSSION

From the stiffness vs cumulative impact energy and the

percent of transferred energy vs cumulative impact energy, two and

sometimes three distinct stages of behavior were observed for the

AS4 /3501-6 and IM6/3501-6 laminates. During the first stage, the

stiffness was essentially constant as was the percent of

transferred energy. The damage observed in this stage was primarily

transverse cracking in the top layers.

After an abrupt decline in stiffness, a second stage of

relatively constant stiffness was observed. The onset of this stage

was always accompanied by a peak in the transferred energy. The

type of damage observed was a network of delamination and

transverse cracking which extended through the thickness of the

specimen.

This second state was sometimes followed by another abrupt

drop in stiffness followed by a third plateau of relatively constant
stiffness. The transferred energy was greater and even more erratic

than for either the first or second stages. C-scan and damage

mapping indicated that the damage progressed to the specimen edges

during this third stage. In addition, some fiber breakage was

observed. The only difference noted between the AS4 and the IM6
reinforced laminates was that the stiffness of the IM6/32501-6

plates were greater due to the higher modulus of the IM6 fiber.

The stiffness plots and the percent of transferred energy for

the thermoplastic matrix laminates were distinctly different from
the 3501-6 laminates. In the case of the thermoplastics, there was

a progressive decrease in stiffness with cumulative impact energy.

in addition, the level of transferred energy was consistently higher

and variable from one impact to the next. C-scans and mapping

indicated that essentially the same type of damage was occurring as

for the 3501-6 matrix" initially a few delaminations and transverse

cracks at the top and bottom sides of the plate which had little
effect on the stiffness, (in fact, Some of the data suggest a smaiJ

increase in stiffness). -Subsequently, damage was through the

thickness and then extended to the plate edges. However, these were

more progressive events than in the case of the thermosetting
materials.
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These differences in the behavior of the thermoplastic matrix

and the thermosetting matrix laminates are probably due to the
higher resistance of the thermoplastics to the extension of

delamination. Once the stiffness begins to decline, the damage in

the thermoplastic materials is confined to a relatively narrow
cylindrical region under the point of impact. With continued

impacting, this region undergoes even further damage along with
some extension toward the specimen edges.

In the case of the thermosetting matrix laminates, the

development of through the thickness damage is followed by

extensive delamination from the center toward the specimen edges.

In a comparison of the RIlE test with the simple fatigue test,
the impact energy is increased incrementally in the RIlE test

whereas in the fatigue test, the energy is constant for each

successive impact. The fatigue study was done using an impact
energy of 3.2J and after the first impact the laminate stiffness was
reduced from about 5000N/mm to about 2000N/mm. In the RIlE test

the cumulative energy reached 100J before the stiffness dropped

from 5000 to 2000N/mm (Fig.18). However, data from Figure 18 are

replotted in Fig.76 but showing the actual energy at each impact. As

in the fatigue test, the drop in stiffness occurred at an impact

energy of about 3J. It would appear that some specific damage
condition occurs at this impact energy level.

Continuing the fatigue test at 3J for each impact resulted in
no further change in stiffness. On the other hand, in the continuation

of the RIlE test, a second change in stiffness occurred at about 5J

(Figure 76). The fact that through the second stage the stiffness is

relatively constant suggests that whatever damage is occurring, it

is not sufficient to alter the plate stiffness. None of less, damage

is occurring as evidenced by the increase in transferred energy. The

fact that the transferred energy varies considerably from one

impact to the next, suggests that the amount of microdamage that

occurs for a given impact varies considerably. One impact may

result in only a minor amount of cracking but creates a condition

that precipitates more extensive damage during the next impact
event.
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Figure 76 - Stiffness vs single impact energy for AS4/3501-6

The effect of the two stacking orientations , (0/90) and (+45),
were similar for all of the laminate materials studied here. As

expected, the initial stiffnesses for the (:!:45) orientations were

always lower than that of the (0/90) orientations. As the stiffness

began to decrease, the (+45) stacking sequence showed more

resistance to damage propagation than the (90/0) stacking sequence

both in the dynamic and static tests. Evidently the +45 stacking

sequence can absorb larger amounts of impact energy than 90/0

stacking sequence by elastic shear deformation; an elastic,

"scissoring" deformation.

For the 3501-6 matrix laminates, the static tests gave very

similar results to those of the dynamic tests. Three distinct

stiffness regions were found in the three point bending tests and the
stiffness values from the static tests and dynamic tests were

nearly identical. In addition, the extent of damage and th_ type Of

damage, transverse and longitudinal cracking and fiber breakage, at

each stage were similar for the static and dynamic tests.

However, the stiffnesses of the PEEK and polycarbonate matrix
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laminates in the static tests were lower than from the impact
testing and the damage modes were also different. This observation
can be interpreted in two ways. One is membrane deformation and
the other is viscoelastic behavior. In ductile materials, deflection in
the static test occurs not only by contact and bending deformation
but also by membrane deformation, especially in a plate supported at
two edges.

The fact that membrane deformation was involved in the PEEK
composite is evident from the C-scan results. In the impact test,
damage was confined to the contact region between impactor and
sample (Fig.36c). In the static test, large amounts of damage can be
found in the edge region of the sample (Fig.68) which are very likely
the result of membrane deformation.

The other explanation for the differences in stiffness is the
viscoelastic characteristic of the thermoplastics. The low strain
rate of the static test (0.005mm/sec) results in a lower stiffness
than at the high strain rate impact loading.

Also the microfracture patterns from static test and impact
tests are different for thermoplastic matrix. In the static testing of
the thermoplastic materials, not only was there fiber breakage but
also significant displacement of the plies (Fig.69). In the case of the
polycarbonate laminate, the static damage was more restricted
than for the PEEK laminate. In general, the polycarbonate laminates
were more damage tolerant than the PEEK. Part of the reason for this
is that the thickness of the polycarbonate sample (5.12 mm) was
greater than that of the PEEK sample (4.16 mm). However, there may
be more than thickness involved.

The thermoplastic laminates sustained considerable "plastic"
damage, e.g. the development of a bulge on the back surface without
any associated delamination or fiber breakage. This type of damage
did not occur in the case of the 3501-6 matrix laminates presumably
because of the lower shear yield strength of polycarbonate and PEEK
compared to 3501-6.

The post-impact tensile modulus results (Fig. 75) are at first
glance somewhat surprising. One would have thought that
delamination and transverse cracking, that dominate the 3501-6
laminates would be less severe on tensile stiffness than the fiber

breakage sustained by the PEEK laminate. In fact, the PEEK laminate
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suffered less reduction in modulus than the AS4/3501-6 and the
IM6/3501-6 laminates. It would appear that the extent of damage
rather than the type of damage is more important in this post-
impact test.

The specimen geometry effects, sample size and thickness, on
damage tolerance were as expected. Increasing the unsupported area
from 25 cm 2 (5cmx5cm) to 100cm 2 (10cm x 1-cm) simply allows
for more energy to be dissipated by elastic flexture. Decreasing the
laminate thickness from 32 plies to 16 plies (at the same
unsupported area, 25cm2) simply reduces the amount of material
available to resist impact loads by elastic deformation.

It is clear that repeated impact with increasing impact energy
does not distinguish different types of impact damage as claimed
(18). Instead. the changes in stiffness (or in adsorbed energy as
reported in reference 18 ) with cumulative impact energy correspond
to changes in the extent of damage. Moreover, the adsorbed energy
includes instrument related effects such as the friction between the
impactor and the tube (14).

A comparison of the RIlE testing results with those from
single impact drop tests is shown in Fig.77 taken from reference 18.
Both methods display similar information but the RIlE results are
compressed along the impact energy axes. This result is reasonable
in that in the RIlE test the damage accumulates in the sample, i.e.
tess impact energy is required to see the next damage stage than for
the single impact test. Therefore, the RilE technique reduces the
experimental time and materials required to investigate impact
resistance.
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However, the RIlE technique has a problem in terms of data

interpretation. For every impact the impact conditions are changed.

For example, the area being impacted is already damaged so that the

conditions of load input are different than if a fresh sample is used
each time.

CONCLUSIONS

The microdamage that occurs for Mode I and Mode II

delamination was examined by potting delaminated specimens in a

clear epoxy, sectioning through the damage, polishing the cut

sections and examining using light microscopy.

In the case of Mode I delamination of unidirectional CFRP

composites, the major observation was fiber bridging including

large ligaments or fiber bundles which have a significant effect on

the interlaminar fracture energy and on the apparent crack opening
displacement. The study of Mode II delamination of unidirectional

laminates revealed a very narrow crack opening with only occasional

fiber bridging.
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The Mode II crack propagation in a (0,90) laminate was
predominantly within the 0o plies but near the ply/matrix boundary

Impact testing by repetitive impacts with increasing energy
was studied and it was found that this technique does not discern
changes in the type of damage with increasing cumulative impact
energy. Instead, the changes in the impact response, notably
stiffness, are the result of changes in the extent of damage.

In the case of laminates based on a brittle thermoplastic
matrix, 3501-6, there were distinct changes in stiffness that
corresponded to the development of through the thickness damage
and then to the extension of the damage to the specimen edges. In
the case of two thermoplastic matrix materials, PEEK and
polycarbonate, the changes in stiffness were not as abrupt as for the
thermoset but instead there was a gradual decline in stiffness. None
the less, the damage progressed in the same manner; first through
the thickness damage then extension of the damage to the specimen
edges.

Static flexure testing of the 3501-6 matrix laminates
resulted in the same changes in stiffness and extent of damage as
observed in the dynamic tests. Static testing of the thermoplastic
matrix laminates gave results somewhat different than the dynamic
tests. These differences were attributed to the lower modulus
thermoplastic laminates undergoing membrane deformation in the
static tests and the greater time dependent viscoelastic nature of
the thermoplastics compared to the thermoset.

Literature references suggest that the repetitive impact test
gives similar results as for single impacts of fresh specimens.
However, interpretation of the repetitive impact test results are
difficult, especially in terms of the micromechanics of impact
damage, since for each sequential impact event the condition of the
specimen surface changes so that conditions of load input into the
specimen are undefined.
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APPENDIX

COMPUTER PROGRAM FOR PLOTTING DAMAGE MAPS c

c Requires Apple Computer, Inc Macintosh Plus TM or higher
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COMPUTER PROGRAM FOR PLOTTING DAMAGE MAPS

Written in True Basic TM using the Run Time Package TM.

library "3dlib*"

library "Pictlib*"

call Copy_printer(I)

dim damCut(32,40),damage(32,40),pangle(32),npts(32)

open #3: NAME "PC (3s)", ACCESS input, Organization text

input #3: nplies,ncuts,dmax

for i=l to nplies

input #3 :plyn,pangle(i),npts(i)

for j=l to npts(i)

input #3:damCut(plyn,j),damage(plyn,j)

next j
next i

close #3

let plyTick=l
let dTick=l

let angle=45
let xs=.8

let ys=l.4

do

clear

print "AS4/Polycarbonate (90/0) STAGE 1 "
call ScaleParaWindow(1 ,dmax, 1,ncuts, 1 ,nplies,work$)

call SetViewPlane3(0,1,0,work$)

call Cabinet3(angle,work$)

Ask Window x 1,x2,y 1,y2

let xm=(xl+x2)/2

let xmin=xm-(xm-xl)/xs

let xmax-xm+(x2-xm)/xs

let ym=(yl +y2)/2

let ymin=ym-(ym-yl)/ys

let ymax=ym+(y2-ym)/ys

Set Window xmin,xmax,ymin,ymax

TM Trademark of True BASIC, Inc.
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call MyFrame
for i=nplies to 1 step-1

call plyplot(i)
next i
get key hold
input prompt "New Window Scale:":xs,ys
input prompt "New Angle:":angle

loop

stop

sub plyplot(np)
dim ptmp(40,3)
mat redim ptmp(npts(np),3)

for j=l to npts(np)
let ptmp(j,1)=damage(np,j)
let ptmp(j,2)=damCut(np,j)
let ptmp(j,3)=nplies-np+ 1

next J

if(pangle(np)=0) then

set color "black"

else

set color "red"

end if

call MatArea3(ptmp,work$)
set color "black"

call MatLines3(ptmp,work$)

end sub

sub MyFrame

dim atmp(11,4)

let atmp(1,1), atmp(2,1), atmp(3,1), atmp(7,1), atmp(8,1),

atmp(10,1)=0

let atmp(1,2), atmp(2,2), atmp(6,2), atmp(7,2)=l

let atmp(1,3), atmp(5,3), atmp(6,3), atmp(7,3), atmp(8,3)=l

let atmp(9,3), atmp(10,3)=l

let atmp(1,4), atmp(2,4), atmp(3,4), atmp(4,4), atmp(5,4),

atmp(6,4)=l

let atmp(2,3), atmp(3,3), atmp(4,3), atmp(ll,3)=nplies

let atmp(3,2), atmp(4,2), atmp(5,2), atmp(8,2), atmp(9,2),

atmp(10,2)=ncuts

let atmp(4,1), atmp(5,1), atmp(6,1), atmp(9,1)=dmax

let atmp(7,4), atmp(8,4), atmp(10,4)=l
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let atmp(ll,1), atmp(ll,4)=0
let atmp(11,2)=ncuts
let atmp(9,4)=0
call MatPlot3 (atrnp,work$)

for i=0 to dmax step dTick
call LineOff3(i, 1,1,i,ncuts, 1,workS)

next i
for i=l to nplies step plyTick

call LineOff3(0,1 ,i,0,ncuts,i,work$)
next i

end sub
call Copy_done

end

r .
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